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MEMORANDUM

To: ANVCE (OP-96V)
Department of the Navy
Arlington, Virginia

Attn: Dr. H. L. Weiner

From: Peter S. Shoenfeld

Subject: Mathematical Model of a Mixed Surveillance System

This memorandum describes a model of reactive surveillance

in which two classes of contacts occur. A single search vehicle

attempts to maintain some localization of a single target vehicle

with contacts occurring intermittently as a Poisson process but

only when the target is within a certain range (exposure disk) of

the searcher. An external surveillance system is also present;

it produces contacts as a Poisson process irrespective of the

target position. Searcher tactics are assumed to approximate

optimal search based on an assumed circular normal target dis-

tribution determined solely by the class (searcher or external

system) of the most--recentL ontact and time since that contact.
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The remainder of this memorandum is divided into sections.

The mathematical model and possible generalizations are
described in the first section. Numerical techniques employed
for the evaluation of limits and integrals are discussed in the
second. The computational algorithm is stumnarized in the third

section. A computer program listing is included as an appendix.
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Mathematical Model

Three types of contacts are considered; those by the

searcher, those by the external system when the target lies

within the searcher's exposure disk, and those by the external

system when the target lies outside this disk. Probabilistically,

the sequence of contact types and corresponding contact times is

described as a Markov renewal process in which the distribution

of next contact type and recontact time depends only on the type

of most recent contact; the process regenerates with each contact.

The sequence of contact types is a Markov chain. The intervals
between contacts are described separately as inhomogeneous,

continuous time parameter, Markov processes with different time
dependent transition functions and initial probability vectors

according to the type of most recent contact. These processes

have five states corresponding to the three types of contacts

(absorbing states) and target locations within and outside of the
searcher's exposure disk before recontact. The assumed circular

normal target distribution is described by a linear datum growth

law with initial datum area determined by contact type and datum

growth rate determined by target motion statistics.

These concepts are intended to model reactive surveillance
by ANVs; the external contacts might correspond to those generated

by SOSUS or by all other surveillance systems combined. However,

the concepts generalize to situations involving differing numbers

of contact types, transition functions, and datum growth laws.

The principal measure of effectiveness derived in this memo-
randum is distribution of actual target range from the expected

(by the searcher) target location at a random time instant. This

has obvious application to anti-SLBM defense. Many other such

measures could be derived from the information generated by the
model.
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The five states in the interval following a contact are

numbered and described as follows:

State I - Recontact by the external surveillance
system has occurred while the target is
exposed to contact by the searcher.

State 2 - Recontact by the external system has
occurred while the target is unexposed
to the searcher.

State 3 - Recontact by the searcher has occurred.

State 4 - Recontact has not yet occurred and the
target is exposed.

State 5 - Recontact has not yet occurred and the
target is unexposed.

The three types of contacts have the same numbering as the first

three states.

Let

process in
/state i last \i- l2p3t4

Pij(t) - Probability at time t contact of J- 1,2,3
(after last type j
contact

and

Pj(t) - (t) (i - 1,2,3)

where

t - time since last contact.

Three separate Markov processes are obtained for j 1,2,3. By

definition,i4



P (0) = (0,0,0,,0o)

and

P 2(o)= (0,0,0,o,1).

Since the target must be exposed for contact by the searcher to

occur,

P3 (0) - (0,0,0,1,0).

The model uses three absorbing states corresponding to

contact types although the use of only two (external and by

searcher) would appear more natural. This is done so that the

initial probability vectors, PJ(O), can be specified a priori.

In adapting the model to a more general situation in which there
are N (in this case two) classes of contacts and M (in this case

also two) intervening states, as many as MN (in this case three

sufficed) absorbing states might be required.

Let

unconditional probability]

(A) that target is exposed to-searcher during search ofdatum area A

and

ate at which unexposed targets
P(A) [enter exposure disk during

search of datum area A.

-target 
exposed trget 1Proabi i .. . unexposed|

=)T r y t tm t at time t M0.
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r.
"Datum area" is defined by

A - 6TT 2  (1)

where a 2 is the parameter characterizing the assumed circular
normal target distribution. This is the area of a bounded region

which, if it contained the target with a uniform location distri-

bution, would require the same expected effort to detect as is

required by a circular normal distribution with parameter a
2

(see reference [a]). While in actuality the quantities 9 and ,

depend on geographic details and are not functions of A alone,

the following formulas are reasonable approximations:

C(A) -l-exp(-RE2/A) (2)

and

9(A) - 2REVs/A, (3)

where

RE - radius of exposure disk, and

Vs - searcher patrol speed.

Formula (2) subsumes searcher allocation of effort and non-

regularity in the search region. Formula (3) is familiar and

standard for TR2 << A, it is shown below that it is sensible for

small A as well.

Consider an arbitrary RE and A. If the target is not

exposed to detection, it is confined to a region of expected area

-6-
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A exp 2

Let 19 be the speed at which the boundary of the disc of exposure

sweeps through this unexposed area and let W be effective sweep

width. For TTRE2 << A, the entire boundary intersects A,

S- Vs and W 2RE. For TRE 2 >> A, only a small portion of the
boundary intersects A, and speed perpendicular to that segment

is Vs (2/"). But with probability .5, that segment is sweeping

into exposed area, i.e., no new area is exposed. Thus S - S/I

and W - the length of boundary intersecting A.

Now if the target is located in the unexposed area, the

rate of entry into the disc of exposure is

A exp (-TTRE 2 /A)

Equating this to (3), one has

2
" exp (T (4)

S (A

which, for -RE 2 << A, gives the expected result, 'WI' 2RE. As A

decreases in size, the right-hand member of (4) decreases, and

can be bounded by

"= )T- (f2eep (-.5)).

Taking - S/IT, a presumed minimum value,

-7-



'ATA (2.694),

a very reasonable result. Thus formula (3) appears sensible
for small A, despite the inverse power dependence.

The assumed linear datum growth law after contacts of type
j is

Aj(t) - A (O) + pt 
(5)

where

Aj(t) - the datum area at a time t after a contact
of type j, and

p -datum growth rate,

for J- 1,2,3.

Since type 1 and type 2 contacts both come from the same external
surveillance system, the resulting initial datum is the same for
each (AI(0) A2(O)). The growth rate p is determined by target
motion statistics. If the target is moving in an unbiased random

walk with

Vt - target speed, and

C - mean time between target course changes,

it may be shown that the target location distribution is approxi-
mately circularly normal with density in polar coordinates 6,8),

1- 2

f(re) - (t) exp -2 - (6)
2-o t) 2a 2(t)
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where

02(t) V V 2 C 2 Ct/C- (1- exp(-t/C)X1

Thus for large t,

60~2(t) 2

and, s ince A - 6TTO 2

p - 6TT V t. (7)

Formula (7) is used to compute p in applications.

Let

O- external recontact rate

M a j~ obabil ty tecontact b by time t
6T oalltY r xt r a In by JJac

X- searcher recontact rate for an exposed target

searcher target exposed1at time t and I
-~oab t recontact by no recontact I

OT time t +T by time t Im
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%j(t) - rate at which unexposed targets enter the
exposure disk after a type j contact

- -Probbil targP~et target unexposedi
Probability exp e d at at time t and

l t~ime t last contact of Mtype j 7-

and

Yj(t) rate at which exposed targets leave exposure disk

[target Itarget exposed
- Probabilityunexposed at at time t and

bT Itime t +T last contact oftype j 'Tl =o

where

t - time since last contact,

for j = 1,2,3.

It is assumed that the rates a and X are actually constant
and that the rates Oj and y. are functions of t alone. The model.JJ

requires these assumptions, which seem quite reasonable. It
follows that

0 0 0 0 0

0 0 0 0 0
dP-(t) - PJ(t) 0 0 0 0 0 (8)

dt
0 X -tC+xY .(t) y.(t)

0 a 0 s(t) -[+ (t)3

- 10 -



Now

(t)- ,(Aj(0))

2REVs .
- (9)

A.(t)

by formula (3). For the case a - X 0, P4 j(t) - 9(Aj(t)) and

the fourth equation in (8) becomes

9'(A i(t))A i'(t) - Y j ( t ) § ( A j ( t ) ) +Pj (t) (I - (Aj (t))).

Given a form for S this can be solved for yj in terms of Pj and

A J. Using formula (2) for t,

2 TTR 2 aAj(t)

1.(t) exp(-TTRE 2/A(t)IJ j t  A.(t)) 1t a

[exp(-R E2/A (t)) [ (tT 31

exp(-TTR2/A i(t) ( t) ( 10)

System (8) could be easily modified to discard external

contacts occurring at times when their information is inferior

to that already available from the last contact. This would

entail replacing the term a in (8) by

a (t) 0if A.i(t) -<AlI (L otherwise IA(0)}

This modification would have little effect in most cases.

- 11 -



Let

B lim P (t) for i,j - 1,2,3.
ii t-.4 ij

It may be shown that since a > 0, the matrix Bijp is well

defined, has all positive entries, and all column sums one.

[Bij] is the transition matrix of the Markov chain characterizing

the sequence of contact types. It has a unique eigenvector

summing to one with eigenvalue one; this is the vector of steady

state probabilities. Let

steady state probability vector for
(e1,e2,e3) - rkov chain characterizing sequence ()

of contact types

If

B13(B22 - 1) - B23B1 2
1(BI- I)(B 2 2 - 1)- 221

2 M B23 (BI, - 1) - BI3B21  , and

(Bi1 - 1)(B 2 2 - 1)- B2B21

03 =

then (12)

e M for j 1,2,3.
i +t1 2 +3

Define

Qj~t Prbablit[recontact within ilast contact

~time t ithni type jtQj(t) - ProbabilitY Lim t 1ofstyp

- 12 -



and
t

E- f l-Qj(s)] ds. (13)

Then

3
Qj(t) " iL1 Pij(t) • (14)

Integrating by parts,

Conditional expectation-
of duration of portion
of interval between 0 (s if s ,
contacts where time - j if s J Q(s)ds
since last contact < t t if s k t
given that last contact
of type j

- O.(t). (15)

In particular, defining

L im n (16)

[Expected value of 1
L -time until recontact
j after contact of (17)

[type j

This limit certainly exists since a > 0 and (8) imply that

1- Qj(t) is bounded above by exp(-at).

-13-
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t

The next derivation assumes that the Markov chain of contact

types has reached its steady state; in reality this condition and

its consequences are approached asymptotically for long search

histories. Let

'Expected value of 1
time between contact
of type j and last
Preceding contact

Then, by Bayes Theorem,

[preceding of]
lI E Lk Probability pontact ocOntact

k-I type k type j

3 B. 0

-k=l Lk 31ZBi 6 i
i=l 1

1 3
-- M tk Bjk ek .  (19)

Also, defining

runconditioned expected value] (20)

"of time between contacts

3
r ek Lk. (21)

k-I

Consider a long interval of search history of duration TM

-14-



*j

for which the initial state is assumed known *. Let

T [a random time instant, uniformly]T"distributed on [O,T M]

[the type of the last contact precedingl
Jl LT (0 if there is no such contact) J

he type of the first contact following] ad
J2 " LT (0 if there is no such contact) and

[time elapsed at T since last contact]Te [(0 if there is no such contact)

The random variables Jl, J2, and Te all have limiting dis-
tributions as TM which are independent of the initial state.
These distributions are:

Probability [j1  J) = ..L for( 1 2,3; )(22)
r by ( 17) and (20))

Probability tJ2 = j ] = .L- (for( 11 I2,3; )-'1- 83;(23)
Prbblty[2 j by 18), and (20

and 3
e Okk(t)

k=l (oProbability [T e < t] k2for 0 )t <
e (by (11), (15), and (20)).

Now define

F(Y) -Probability datum area A < Y](at random time Tand

0 if Y ' Aj(0)

unique t such that Aj(t) - Y otherwise

Here the model is regarded as a five state process with continu-
ous time parameter inwhich the three states corresponding to
contacts are attained only for discrete instants.

-15-



Then by (24),

33; e0 (AklI (Y))

F(Y) =r (25)

With an assumed circular normal datum with parameter 02, formula
(6) implies

[target within 22

Probability distance R of - l-exp(-R/2o2).
datum center J

Defining

Unconditional steady state probability
G(R) - |that target is within distance R of 1

Ldatum center

G(R) - I C- exp(-R 2/2x)] dF(6Trx)G (R) _ d- , uing (I

f0 dx

Integrating by parts and changing variables,

" ex(-3 2/U)F(U)

G(R) - 3TTR 2 f 2 dU
0

Using formulas (25) and (5) for the functions F and Ai and
changing variables again leads to

G 31pTR 2  3 0 expt'3lR2/(Ak(O)+pt)G R ; e xp-3 0 k(t) dt (26)
r k= 1  0  (Ak(O) +pt)2

- 16-
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Evaluation of Limits and Integrals

System (8) is evaluated numerically by the Runge-Kutta
method for j - 1,2,3. The vectors Pj(t) -(Plj(t),"',P5j(t))

and dPJ/dt - (PI (t ,"'P5j'(t)) are available explicitly at
each increment. The evaluation is carried out over the interval
[0, Tmax), where Tmax is chosen so that the recontact probability,
Qj(Tmax),will be quite large (say 2 .95) for each J. The contact

type transition probabilities are

Bi - lim P (t).ij t-0 ij

Since

3

i 1Bi -1

necessarily, a convenient and reasonable approximation is

ij Pij(Tmax) + 3i- .1Pij(Tmax,) . (27)

i ,,1 ij ' ma

The functions Cj(t) were defined as

aj(t) =W - l-Qj(s) ds

3
where Qj(s) - Jl1Pij(s). Since values of the Pij and their
derivatives are explicitly available at fine increments from the

Runge-Kutta evaluation of system (8), the Oj can be obtained at
the same time to reasonable accuracy by trapezoidal integration

- 17 -



for times in the interval £0, Tmax]. The limits

.lie m jt
L t - (

are also required. Approximations to the Lj are obtained by

assuming that the probability of no recontact becomes a negative

exponential after a long time. This assumption is reasonable,

particularly if datum growth really ceases after a long time.

More precisely it is assumed that for t a Tmax ,

1 - Q(t) - expt- .(t - Ta))
I- Qj (Tmax)

for some constant . This leads to the approximation

Lj" ETl- Qj(T)) + 2  (28)
Qj I (Tmax)

which is calculable since Qj, Qj, and Qj' are all available for

t - Tmax .

The integrals in

3TTpR 2 3 1 r exp£'3TR 2/(Ak(0)+P(t)]
)-- (t) dt
r k=l (Ak(O) +pt)2

must be evaluated for a number of values of R. The portion of
each integral in the interval C0, Tma x ] is evaluated from a table

of values of (t, Olk(t)) which was saved from the Runge-Kutta
integration. The increment size changes several times in the

- 18 -



table. Simpson's rule is used separately on each interval with
a constant increment size; trapezoidal integration is used
wherever an odd subinterval is left over. These integrals have
substantial "tails" in the interval C max * These are
estimated by assumning that for t > mx

Ok(t) Lk, and

Ak(O) +Pt Pt-

This leads to the approximation

3TI e2 3 fflkep-3r 2(t))+P)G R k-LI ek(AkO -pt)t d
31TR2  ept-T1R(k(O) +P t) ) dt

+ {1 - exp(-3TTR 2 /p Tmax)} (29)

-19-



Summary of Computational Algorithm

The algorithm is embodied in a computer program which is

included as Appendix A. Inputs are:

Vs - searcher patrol speed (nm./hr.),

RE - radius of exposure disk (nm.),

a - external recontact rate (hr. 1 ) when target
is exposed,

X - searcher recontact rate (hr.-),

p - datum growth rate (nm.2/hr.),

A1 (O) - initial datum size after external contacts
(nm. ), and

A3(0) - initial datum size (nm.2) after searcher
recontacts.

The systems of linear first-order differential equations

(8) are integrated over the interval CO, Tmax] by a library

Runge-Kutta routine for j - 1,2,3. The rates %1(t) and yj(t)

are calculated by formulas (9) and (10) using the datum growth

law (5). Values of Qj(t) and Oj(t) are calculated simultaneously

as discussed earlier using formulas (13) and (14). Values of t

(time since last contact) and 0 (t) are retained for later usej

for a number of increments. The reason for retaining the time

values is that the Runge-Kutta routine determines and adjusts its

own step size, defying user control. Values of t, Plj(t),

P2j(t), P3j(t), P4j(t), P5j(t), Qj(t), and Qj(t) are printed for

a number of values of t.

- 20 -
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The limits Bij and Lj are calculated by formulas (27) and
(28). The steady state contact type probabilities Bj are
calculated by formula (12). The Bij, Lji, and 01 are then
printed out.

Values of the range distribution G(R) are calculated from
the tables of t, 0 (t) and printed for the values R - 5,10,
15,"',200 nm., as discussed earlier using formula (29).

Peter S. Shoenfels

Reference La): L. D. Stone, Theory of Optimal Search, Academic
Press, New York, 1975.
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APPENDIX A

COMPUTER PROGRAM LISTING

DIMENSION PRMT(5)PDEERP(5) ,P(5) vAUX(8v5)
DIMENSION PDi(3,3) ,DF:i(3,-3) T(3v,400) ,OMEGA(3,400)
DIMENSION OMINF(3),THl-ETIA(3),E4(3,3),N(3)
REAL LAMBiDA
COMMON V:*;PALPHiAPTLAMBDJARHtOA01VA02,JPPDDEPDVTPOMEGA,

2 OMINr 7 NTLASTp:.Lt AT
DIATA f:RMI'/0.,dOOop.0,06?C,0.000/
DATA NE'IM/5/y,1MAX/:3oo */

C READ PARAMETER'S
5 TYP'E 10
10 FORMAT(1X,'VSREAL-FHFALAMBDIARHOAZEROIPAZER3?'/)

ACCEPT 2OvVSPRALFHALAMBDIARHOA01,A02
20 FORMAT(7G)

EXTERNAL. FCTPOUTP
C INTEGRATE O.E',E. SYSTEM FOR EACH CONTACT TYPE

C BY RUNGE KUTTA METHOD USING SUB4ROUTINE RKGS
FRMT(2)=TMAX
DO 100 J=lp3
PRMT(5)=0.
DO 30 K=1,5
P(K)=0.

30 DERP(K)=0.2
IF(J*NE.2)P(4)=1.
IF(J.EQ*2)P(S)=1.
N(J)0O
OMINF(J)=0.
TLAST=0.
PEILAST=0#
TYPE 50PJ

50 FORMAT(20XP'TYPE',13,' CONTACT'//4XP'T'r SXP'P1', 4XP
2 'P2', 4XP'P3'r 4X,'F4', 4XoF,':5', 4XP'PD',4XP'OMEGA'//)
CALL RKGS(FRMTPDERFPNDIMIHLFFCIOLT'FAUX)

100 TYPE 110PIHLF
110 FORMAT(1XP'IHL.F='PI4//)
C FIND LIMITS TO OBTAIN TRANSITION MATRIX B(ioJ) AND
C MEAN HOLDING TIMES OMINF(J)

DO 200 J=1,3
PDTOT=FPD(JFI1)+F'D(JP2)+PD(Ji3)
DPDTOT=DPD(J1)+DP'(J2)r.'PD(J,3)
OMINF(J)=OMINF(J)+(l.--PDTOT)**2/DPDTOT
DO 200 I=1,3

200 f( IPJ)=PD(JPI)+DPD(J, I)*( 1 -PDTOT)/DE'TOT
C FIND EIGENVECTOR OF EB(IPJ) TO GET STEADY STATE PROBABILITIES

T=(B(1,1)-1. lv)*(B(22)-l.)B(2)*(1))/

THETA(2)-(B(2,3)*(B(l,1)-1. )-E(13)*B(2,1) )/D
THETAC3)=-1.
SUM=THETA( I)+THETA(2)+THETA(3)
DO 2.L0 J=1,3 ')~ tV

250 THETA(J)-THETA(J)/SUM THIlS PAGY I Wo_



C PRINT THESE RESULTS

-TYPE 260,OMINFPTHiETAv ( (E(IPJ) PJinj3) lI,3)
260 FORMATC//20X,'MC'AN HOLDING TIMES'/

2 3(3XP1r13e.,)//20X,:'I:I.'Y STATE FRFOIAAEI.'ltITIES'//3(3XF13.5)//
3 d20Xo'rIkAN!.3lTT0N MArII<1:Xl//3(:5(3'Xvf:13.':i)/))

110 t~00 J-.1,3
SO.M-0.
NN=0
TOLI'=0.

280 IF(NN.EG*N(J))OO TO 400
H1=T(JPiNN+1)-TOLD
IF(NN+2.LE.N(J))H2=T(JNN+2)-T(JvNN+1)
IF(Hi2.NE.H1.OR.NN+2.G*T.N(J))GO TO 300
SUM=SUM+Hl*(ELT(NNRR)+4.*ELT(NN+IPRR)+ELT(NN+2uRR))/3.
TOLE'=T(JPNN+2)
NN=NN+2
GO 'TO 280

300 SUM=SUM+H1l*(ELT(NNvRR)+ELT(NN+u'RR) )/2.
TOLD::T(JFNN+1)
NN=NN+l
GO TO 280

400 FPROB=FF(OB+THETA(J)*SUM
S00 CONTINUE

FPROB=9.424778*RHIO*RF.f*RR*PROB/(THETA(1 )*OMINF(1)+
2 THiETA(2)*OMINF(2)+THIETA(3)*OMINF(3) )+
3 1 *-EXF (-9 *424778*fRr*Rf / (F'%HO*T'MAX))

TYPE 510YRRPFROB
510 FORMAT( 1XpF6. 1 2XvF7.3)
600 CONTINUE

GO TO 5
END
FUNCTION ELT(IPRR)

C EVALUATES INTE GRAND FOR RANGE DISTRIBUTION CALCULATION
DIMENSION P11(3v3) ,I:IPE(3,3) T(3,400) pOMEGA(3,400) v

2 OMINF(3) vTHETA(3) ,1(3?3) ,N(3)
REAL LAMBDA
COMMON VSALPH4ARLtAMEiD AvRtoA0,A02,JPDDPDvTOMEGAY

2 OMINFPNPTLASTPPDLAST
A0=AO1
IF(J#EG.3)AO=A02
IF(I.GT.0.AND.I.LE.N(J))GO TO 20
ELT::0O.
0O TO 30

20 TT=T(JvI)
ELT=EXP(-9.424778*RR*RR/(A0+RHO*TT) )*OMEGA(JuI)/

2 (AO+RHO*TT)**2
30 RETURN

E ND
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SUBROUTINE FCT (TTrP' DERP)
C EVALUATES DERIVATIVES FOR RUNGE-KUTTA ROUTINE

DIMENSION P(5)PDERPU3O)
DIMENSION P11(3,3) ~,EiP(3,3) PT(3v4OO> ,OMEOA(3,400),

2 OMINF(3) rTHETA(3) ,B(.3v3) N(3)
REAL LAMBDA
COMMON VSPALPF4ArRvLAMBDARHOA01,PA02,JPIPDPDFTPOMEGAP

2 OMINFPNPTLASTPP'LAST
A (X) =AO+RtIIO*X
BETA(X)=2.*R*VS/A(X)
PfP,(X) =EXP (-3. 141593*R*R/A (X))
GAMMA(X)=(PP(X)/(1.-FF(X)))*(BETA(X)+3.141593*R*R*RHO/A(X)**2)
AO=A01
IF(J.EQ.3)AO=A02
EIERP( 1)=ALPHA*P(4)
ER P(2) ::ALPHA*P ( .)

E'ERP (3) =LAMBDA*F (4)
D'ERP(4)=-(ALFPH-A+L.AMBD)A+GAMMA(TT) )*P(4)+BETA(TT)*P(5)
tERP(5)=GAMMA(TT)*F'(4)-(ALPHiA+BETA(TT> )*P(5)
RETURN
ENDL
SUBROUTINE OUTP(TTPPIERkPPIHLFPNDIMPPRMT)

C OUTPUT ROUTINE FOR RUNGE-KUTTA INTEGRATION
REAL LAMBDA
DIMENSION P(5)PDERP(5)PPRMT(5)

*DIMENSION FPE(3,3) ,DPI'(3,3) ,T(3,400) ,OMEGA(3,400),
2 OMINF(3) ,THETA(3) ,B(3,5) ,N(3)

COMMON VSALF'HAvfPL.AMDI:ARHOPA01PA02,JFDDPDPTOMEGAO-
2 OMINFPNPTLASTpfDLASTr
DO11 10 I=:ly3
FD(JpI)=P(I)

10 D'D (JrI ).I:ERP( I
F'DEI=P(1 )+P(2)+F(3)
OM INF(J) =OM INF(W) 4(TT-TLAST)*(1.(PDD+PE'LAST) /2.
TLAST=TT
P rl' A ST=P liE
IF(AMOEI(TT, .23) GE.0.0001 >00 TO 50
IF(AMOD(TT,2.).6E.O.0001.ANII.TT.GT.4.)GO TO 50
IF(AMOE(TT,8.).GE.0.0001.AND.*TT.GT.20.)GO TO 50
IF(AMOI:'.(TT,16 ) .GE.0.o001.AN:I).TT.GT.i00. )GO TO 50
TYPE 20PTTrPPPDDrOMINF*(J)'

20 FORMAT(lXF7.2,6(IXvF5J.3) ,1XtF6.2)
50 IF(AMOD(TTps0625>.GE.0#00>1)GO TO 70

IF(AMOD(TTY1.).GE.0.0001.ANE'.TT.GT.4.)GO TO 70
N(J)=N(J)+l
T(JN(J) )TT
OMEGA(J,'N( J) )OMINF(J)

70 IF(PDD.GT. 1.*)PRMT(t3)g1..
RETURN
END
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C

c PAAETR iiUFivi:AC.!T: MN OUTP RETQUIRE:': AN EXTENAL STATFEENT

C
*C DESCRIPTION OF PARAMEFTERS

C FRMT - AN INPUT AND OUTPUT VECTOR WITH DIMENSION GREATER
C OR EQ.*UAL 'TO 5y WHI:CH SPECIFIES THE PARAMETERS OF
C THE INTERVAL AND O1F ACCURACY AND WHICH SERVES FOR
C COMMUNICATION BETWEEN OUTPUT SUBROUTINE (FURNISHED
C BY THE USER) AND SUBROUTINE RKGS. EXCEPT PRMT(5)
C THE COMPONENTS ARE NOT D:ESTROYED BY SUB4ROUJTINE
C RKGS AND THEY ARE
C PRMT(l)- LOWER BOUND OF THE INTERVAL. (INPUT)v

*C PRMT (2)- UPPER BOUND OF 'THE INTERVAL- (INPUT)v
C PRMT (3) - INITIAL INCREMENT OF 'THE INDEPENDENT VARIABLE
C (INPUT)y
C PRMT(4)- UPfPER ERROR flOUND (INPUT), IF ABSOLUTE ERROR IS

*C (3REATwER THAoN PRMT (4)y INCREMENT GETS HALVED.
c IF INCREMENT IS3 LESS THIAN F:.MT(3) AND ABSOLUTE

ERR(CR LESOS THAN PRMT (4) /50o ~ INREMENr GETS D:OUBLED,.
c THlE USER*% MAY CHANGE PRMT (4) BY MEANS OF H I1S

C OUTPUT SUB'ROUT INE.
c PRMT (5~)- NO INPUT PARAMETER. lStJBRO.UT INE RK03 INTIALIZES

c PRMT(9'):r0 IFTE -SR WANTS TO 'TERMINATE

C SUBROUTINE RKGS AT ANY OUTP:UT POINTr HE HAS TO
6. CHANGE Pr<MT(5) TO NON-ZERO BY MEANS OF SUBROUTINE

OUTF. FURTHER COMPONENTS OF VECTOR PRMT ARE
- FEASIBLE IF ITS DIMENSION IS DEFINED GREATER

THAN 5. H-OWEVER FUl .ROtJTINE RKGS DOES NOT REQUIRE
ANt' CHANGE THEM, NEVERTHELESS THEY MAY BE USEFUL
FOR HANING RESULT VALUES TO THE MAIN PROGRAM
(CALLING F% GS) WHICH ARE OBTAINED BY SPECIAL
MAN IPUtL-ATIO.NE WITH OUTPUT DATA IN SUBROUTINE OUTP.

-Y - INPUT VECTOR Orr INITIAL VALUES. (DESTROYED)
LA*TEr-%ON Y IS THE RESLT~ING VECTOR OF' DEPENDENT

-VARIABLFS ccOMF:UTED~ AT INTERMEDIATE POINTS X6
- DERY -INP~UiT VECTOR OF ERROR WEIGHTS * (DESTROYED)

THE SUM OF ITS COMPONENTS MUST BE EQUAL TO 1#
LATEVON ['FRY IS THE VECTOR OF DERIVATIVESP WHICH
BELONG TO FUNCTION VALUES Y AT A POINT X.

NEIIM *- AN .rNPU*T VALUEP WHICH SPECIFIES THE NUMBER OF
EQUATIONS: IN 'THE SYSTEM.

IHLF - AN OUTPUT VALUE, WHICH SPECIFIES THE NUMBER OF
D ISf: 'CTJ;'ONS OF THE INITIAL INCREMENT. IF IHLF GETS
GREATER THAN 109 SUDROUTINE RKGS RETURNS WITH
ERROR ME 111.AG Er IHLF:11 INTO MAIN PROGRAM, ERROR
MESSAGE IHL.F-l2 OR IHLF=13 APPEARS IN CASE
PRMT(3)::O- OR IN CASE SIGN(PRMT(3)).NE#SIGN(PRMT(2)-
PRMT(l)) RESP'-ECTIVELY.
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C FCT - THE NAME OF AN EXTERNAL SUBROUTINE USED. THIS
C SUBROUTINE COMPUTES THE RIGHT HAND SIDES DERY OF
C THE SYSTEM TO GIVEN VALUES X AND Y. ITS PARAMETER
C LIST MUST BE XY,DERY. SUB111ROUTINE FCT SHOULD
C NOT DESTROY X AND Y.
C OUTP - THE NAME OF AN EXTERNAL OUTPUT SUBROUTINE USED.
C ITS PARAMETER LIST MUST BE X,Y,DERYIHLFNDIMPRMT.
C NONE OF THESE PARAMETERS (EXCEPT, IF NECESSARY,
C PRMT(4),PRMT(5),...) SHOULD BE CHANGED BY
C SUBROUTINE OUTP. IF PRMT(5) IS CHANGED TO NON-ZERO,
C SUBROUTINE RKGS IS TERMINATED.
C AUX - AN AUXILIARY STORAGE ARRAY WITH 8 ROWS AND NDIM
C COLUMNS.
C
C REMARKS
C THE PROCEDURE TERMINATES AND RETURNS TO CALLING PROGRAM, IF
C (1) MORE THAN 10 BISECTIONS OF THE INITIAL INCREMENT ARE
C. NECESSARY TO GET SATISFACTORY ACCURACY (ERROR MESSAGE
C IHLF= 1I),
C (2) INITIAL INCREMENT IS EQUAL TO 0 OR HAS WRONG SIGN
C (ERROR MESSAGES IHLF=12 OR IHLF=13),
C (3) THE WHOLE INTEGRATION INTERVAL. IS WORKED THROUGH,
C (4) SUBROUTINE OUTP HAS CHANGED P" MT(5) TO NON-ZERO.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C THE EXTERNAL SUBROUTINES FCT(X,Y,DERY) AND
C OLTP(XY,DERYIHLFNDIMPRMT) MUST BE FURNISHED BY THE USER.
C
C METHOD
C EVALUATION IS DONE BY MEANS OF FOURTH ORDER RUNGE-KUTTA
C FORMULAE IN THE MODIFICATION DUE TO GILL. ACCURACY IS
C TESTED COMPARING THE RESULTS OF THE PROCEDURE WITH SINGLE
C AND DOUBLE INCREMENT. I
C SUBROUTINE RKGS AUTOMATICALLY ADJUSTS THE INfREMENT DURING
C THE WHOLE COMPUTATION BY HALVING OR DOUBLING. IF MORE THAN
C 10 BISECTIONS OF THE INCREMENT ARE NECESSARY TO GET
C SATISFACTORY ACCUFRACY, THE SUBROUTINE RETURNS WITH
C ERF'ROR MESSAGE IItl.F::::1 INTO MAIN PROGRAM.
C TO GET. FULL FL.EXIBf"ILITY IN OUTPUT, AN OUTPUT SUBROUTINE
C MUST BE F:URNISIIED BY THE USER.
C FOR REFERENCE, SEE
C RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL COMPUTERS,
C WILEY, NEW YORN/LONDN, 1960, PP.110-120.
C
C
C

T'HIS PAGEI _:
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SUB4ROUTINE RKGS(PRMTYPDERYPNIIMP IHLFPFCTPOUTPPAUX)

DIMENSION Y(1)rDERY(1) ,AUX(8v1),A(4) PD(4)uC(4)uPRMTC1)
DO 1 I=IPNDIM

1 AUX(8 I )=.06666667*E'ERY( I)
X=FRMT(l)
XEND=PRMT (2)
H =PR MT (3)
PRMT(5) =0..
CALL FCT(XPY'E'ERY)

C
C ERROR TEST

IF(ti*(XENEI-X))38,37,2

C PREPARATIONS FOR RLNGF-KUTTA METHOD
2 A(1)in.5

A(2)=.2928932
A(3)=1#707107
A(4)=*16666.7
B(1)=2#

B(3)=1.
B(4)=2#

C(2)=# 2928932
C(3)=1 .707107
C(4)=#5

C
C PREPARATIONS OF FIRST RUNGE-KUTTA STEP

[D0 3 I=lYNDgIM
AUX(lpI)z:Y( I)
AUX(2vI)IIERY( I)
AUX(3 I )=0.

3 AUX(6vI)=O.
IREC=0
H=H+H
IHLF=-1
IS TEP=OI

C

C START OF A RUNGE-KUTTA STEP
4 IF((X+H-XEND)*ti)7p6p5
5 H=XEND-X
6 IEND=l

C
C RECORDING OF INITIAL VALUES OF THIS STEP

7 CALL OUTP(XPYPDEFRYrIRE:CtN.IIMPRMT)
IF(PRMT(5) )40i'8v40

8 ITEST=0 1 "
9 ISTEP=ISTEP+1 lS~

C
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C START OF INNERMOST RUNGE-KUTTA LOOP
J= 1

10 AJ=A(J)
BJ=B(J)
CJ=C(J)
DO 11 I-LYpNDIM
RI=H*DERY(CI)
R2=AJ*(R1-BJ*AUX(6pI))
Y( I)=Y( I)+R2
R2=R2+R2+R2

11 AUX(6vI):--AUX(6,I )+R2-CJ*Rl

12 J=J+l

13 X=X+*5*H
14 CALL FCT(XPYPDERY)

GOTO 10
C END OF INNERMOST RUNGE-KUTTA LOOP
C
C
C TEST OF ACCURACY

15 IF(ITEST)16r16p20
C
C IN CASE ITEST=O THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY

16 DO 17 I=1vNDIM
17 AUX(4,I)=Y(I)

ITEST=1
ISTEP=ISTEP+ISTEP-2

16 IHLF=IHLF+1
X=X-H
H= 5*H
DtO 19 I=1,NDIM
Y( I)=AUX(1 I)
D:ERY I rAUX (2 I)

19 AUX(6vI)=AUX(3pI)
GOTO 9

C
C IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE

20 IMOE'=ISTEP/2
IF( ISTEP-IMOE'-IMOD)21 p23w21

21 CALL FCT(XPYPDERY)
[D0 22 I~lpNE'IM
AUX(5p I)=Y( I)

22 AUX(7vI=:ERY(I)

GOTO 9

C COMPUTATION OF TEST VALUE DELT
23 EELT=0. T£I

DtO 24 I=1,Ni'IMI,
24 DELT=DELT+AUX(8,I)*ABS(AUIX(49I)-Y(I))

IFCDELT-PRMT(4) )28v28,?t,
C
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C ERROR IS TOO GREAT
25 IF(IHLF-10)26p36t36
26 DO 27 I=1,NDIM
27 AUX(4,I)=AIUX(5pI)

1ST EP=1ST E P1S'TE P-4
X=X-H
IEND=0
GOTO 18

C
C RESULT VALUES ARE GOOD

28 CALL FCT(XPYEIERY)
DO 29 I~lvNt'IM

AUX(2gI )=DERY( I)
AUX(3 I )=AUX(6r I)
Y(I )AUX(Su'I)

29 DERY(I)=AlJX(7v1)
CALL OUTP(X-HPYPDERYPIHLFNDIMPPRMT)
IF(PRMT(5) )40p30r40

30 DO0 31 I=1INLIIM
Y(I)=AUX(IPI)

31 DERY(I)=AUX(2vI)
IREC=IHLF
IF( IEND)32p32939

C
C INCREMENT GETS DOUBLED

32 IHLF=IHLF-1
ISTEP= ISTEP/2
H=H+H
IF(IHLF)4p33p33

33 IMOD=ISTEP/2
IF( ISTEP-IM0D-IMOD)4Y3494

34 IF(DELT-.02*F'RMTr(4) )35y35i,4
35 IHILF=IHLF-1

IST EP = ST EPF/2
H= H + H
GOTO 4

C
C
C RETURNS TO CALLING PROGRAM

36 IHLF '=11
CALL FCT(XPYPDERY)
GOTO 39

37 IHLF-12
GOTO 39

38 IHLF-13
39 CALL OUTP(XPYPDERYvIHLFPNDIMPPRMT)
40 RETURN

END
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